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Abstract Most nanodevices under investigation adopt a computational approach
such as molecular dynamics simulations, which gives a numerical value for the poten-
tial energy as calculated from the interaction of every atom on one molecule with every
atom on a second molecule. Although the simulation only involves short range atom–
atom interactions and ignores those interactions at longer distances, the simulation
still involves significant computational time. In this paper, we determine analytical
formulae for four types of Lennard–Jones interactions: (i) a solid spherical nano-
particle with an atom, (ii) two distinct radii hollow spherical fullerenes, (iii) a solid
spherical nanoparticle with a hollow spherical fullerene and (iv) two distinct radii
solid spherical nanoparticles. The interaction energy using the 6–12 Lennard–Jones
potential for these four situations are determined using the continuum approxima-
tion, which assumes that a discrete atomic structure can be replaced by either an
average atomic surface density or an average atomic volume density. Using these for-
mulae the computational time for a simulation might be dramatically reduced for those
molecular interactions involving spherical nanoparticles or fullerenes. Such formulae
might be exploited in hybrid analytical-computational numerical schemes, as well as in
metallofullerenes and certain assumed spherical models of molecules such as methane
and ammonia. As an illustration of the formulae presented here we determine both the
most stable and the maximum radii of a solid spherical nanoparticle inside a fullerene,
modelling the centre of a carbon onion or metallofullerenes. We also determine new
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cut-off formulae for interacting spherical nanoparticles and fullerenes which might be
useful in computational schemes.

Keywords Sphere · Fullerenes · Nanoparticle · Lennard–Jones potential ·
Nanoparticle · Molecular dynamics simulations

1 Introduction

Nowadays, nanotechnology impinges on every aspect of our lives. For example, every
time we touch a computer keyboard, a telephone or any device which needs to resist
bacterial growth, we are infact touching silver nanoparticles [1,2]. Nanomaterials
include, for example, fullerenes, nanotubes, nanowires, nanoparticles and nanorib-
bons, which are involved in many areas of application, such as gas separation [3] and
storage [4], oscillators [5,6], medicine [7] and memory devices [8,9].

Most nanodevices contain nanotubes, fullerenes and nanoparticles as components,
such as gold nanoparticles and multiwall carbon nanotubes [10], nanoparticles inside
nanotubes [11,12], nanoparticles in liquids [13], nanoparticles in polymers [14] and
fullerenes inside nanotubes for nanocomputing [15]. Generally, to study these sys-
tems [13–15] a molecular dynamics simulation is used which calculates the potential
energy for each atom–atom interaction and accordingly requires considerable compu-
tational time. Molecular dynamics simulation is a numerical method that only takes
into account the short range Lennard–Jones interactions, and the longer range inter-
actions are assumed to be zero in order to reduce the computational time [13,14].
The potential energy is ignored when the distance between two atoms is greater than
a certain cut-off distance rc = 2.5σ where σ is the van der Waals diameter. Cox et
al. [16,17] have proposed using the Lennard–Jones potential for a spherical fullerene
interacting with an atom. The formulae derived here could be exploited in conjunction
with certain molecular dynamics simulations in order to reduce the computational
time for those simulations involving spherical nanoparticles and fullerenes.

The formula for the Lennard–Jones interaction of an atom with a fullerene is well
known (see for example Cox et al. [16,17]). In this study, we determine explicit formu-
lae for the Lennard–Jones potentials for (i) a solid spherical nanoparticle with an atom,
(ii) two distinct radii hollow spherical fullerenes, (iii) a solid spherical nanoparticle
with a hollow spherical fullerene and (iv) two distinct radii solid spherical nanopar-
ticles. Such formulae could reduce the computational time of a molecular dynamics
simulation for those systems involving spherical nanoparticles and fullerenes. For
example, most of molecular dynamics simulations use a super computer to evaluate
the interaction energy of several spherical nanoparticles which involves a significant
computational time. The formula presented here might significantly reduce this time.
These formulae might also be adopted for metallofullerenes which are fullerenes with
centrally located metal atoms, and represented by the notation M@Cn where the sym-
bol M is used to denote the additional atom inside the fullerene, and n indicates the
total number of carbon atoms in the cage. The size of the metallofullerene is based on
the number of carbon atoms n which ranges from 60 to 100 with the most stable abun-
dant types being the M@C80 and M@C100 endohedral fullerenes [18]. In addition, the
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same formulae could be used for certain models of molecules such as methane (CH4)

and ammonia (NH3) which assume a central atom surrounded by a spherical surface
of a certain radius and with the like atoms assumed to be uniformly distributed. Such
models dramatically improve the computational efficiency [19,20].

In the following section, we introduce the 6–12 Lennard–Jones potential function
for perfect solid spherical nanoparticles interacting with an atom and adopting the con-
tinuum approximation, which assumes that a discrete atomic structure can be approx-
imated by an average constant atomic surface or volume density. The 6–12 Lennard–
Jones potential energy formulae for two distinct radii spheres; a fullerene with a fuller-
ene; a nanoparticle with a fullerene and a nanoparticle with a nanoparticle are presented
in Sects. 3, 4 and 5, respectively. New formulae for cut-off distances are discussed
in Sect. 6 and an application modelling carbon onion centres and metallofullerenes is
discussed in Sect. 7. Finally, some overall concluding remarks are made in Sect. 8.

2 Nanoparticle with atom

The Lennard–Jones potential is used for two non-bonded molecular structures and
the classical 6–12 Lennard–Jones potential for two atoms at a distance r apart is
given by �(r) = −(A/r6) + (B/r12), where A and B denote the attractive and the
repulsive constants, respectively [21]. This equation can also be rewritten as �(r) =
4ε[−(σ/r)6 + (σ/r)12], where r0 = 21/6σ = (2B/A)1/6 is the equilibrium distance,
σ is the van der Waals diameter and ε = A2/(4B) is the well depth [21]. The van der
Waals diameter σab and the well depth εab for two different materials, say materials a
and b, can be found from the arithmetic mean σab = (σa + σb)/2 and the geometric
mean εab = (εaεb)

1/2 where the labels a, b and ab refer to the interactions between
a material, b material and ab materials, respectively [21], and the numerical values
used for the 6-12 Lennard–Jones constants are as shown in Table 2.

The total interaction energy for two non-bonded molecules is obtained by sum-
mation of the interaction energy for each non-bonded atomic pair, thus E =∑

i
∑

j �(ri j ), where �(ri j ) is the interaction potential energy for non-bonded atoms
i and j at a distance ri j apart. The continuum approximation assumes that the total
interaction energy can be approximated by a double surface integral, a surface-volume
integral or a double volume integral. The double surface integral is used for two hollow
molecules such as fullerene–fullerene interactions, E = η1η2

∫
S2

∫
S1

�(r)d S1d S2,
where η1 and η2 denote the mean atomic surface densities of each molecule and r
denotes the distance between two typical surface elements d S1 and d S2. The sur-
face-volume integral is used for a hollow molecule with a solid molecule such as
fullerene-nanoparticle interactions, E = ηρ

∫
V

∫
S �(r)d SdV , where η denotes the

mean atomic surface density of molecule, ρ denotes the average atomic density of
molecule and r denotes the distance between two typical elements d S and dV . The
double volume integral is used for two solid molecules such as nanoparticle–nanopar-
ticle interactions, E = ρ1ρ2

∫
V2

∫
V1

�(r)dV1dV2, where ρ1 and ρ2 denote the mean
atomic densities of each molecule and r denotes the distance between two typical
volume elements dV1 and dV2.
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Fig. 1 Geometry for solid
spherical nanoparticle
interacting with an atom

Figure 1 shows the geometry of a perfect spherical nanoparticle which is interacting
with an atom. The total interaction energy for a perfect spherical nanoparticle with an
atom is determined by the volume integral,

E p(r) = ρ

∫

V

(

− A

ξ6 + B

ξ12

)

dV,

where ρ is the average atomic density for the nanoparticle, namely number of atoms
per unit volume, and ξ is the distance between the atoms at the points P and Q given
by ξ2 = r2 + τ 2 − 2rτ cos φ. At the point Q, we generate a ring of radius τ sin φ, we
find that the potential energy for an atom interacting with all atoms of the sphere of
radius a is given by E p(r) = −P6(r) + P12(r) where Pn(r) is defined by

Pn(r) = Cnρ

∫

V

1

ξn
dV = Cnρ

a∫

0

π∫

0

2πτ sin φ

ξn
τdφdτ

= 2Cnρπ

r(n − 2)

[

− 1

(n − 4)(r + a)n−4 + r

(n − 3)(r + a)n−3 (1)

− 1

(n − 4)(r − a)n−4 + r

(n − 3)(r − a)n−3 + 2

(n − 3)(n − 4)rn−4

]

,

where the coefficients C6 = A and C12 = B, and r is the distance between the atom
and the centre of the spherical nanoparticle.

Equations such as (1) might be exploited for those molecular dynamics simula-
tions comprising solid spherical nanoparticles which are interacting with other more
complicated molecules and the computational time might be considerably reduced.

3 Fullerene with fullerene

The interaction between two distinct radii spherical fullerenes can be considered as the
interaction of two different sized hollow spheres, as illustrated in Fig. 2. In a molecular
dynamics simulation, the total interaction energy for two fullerenes is determined as
the sum of the interactions for each atom on the left sphere with each atom on the right
sphere. However, using the continuum approach, the interaction energy is determined
from the double surface integral, E = η1η2

∫
S2

∫
S1

�(r)d S1d S2.
The first surface integral is the interaction energy of a fullerene with an atom, as

illustrated in Fig. 2 with the single atom interacting with the right sphere. The energy
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br1

r
φ1

asinφ1

a

Fig. 2 Geometry for two fullerenes

E f (r) for a spherical fullerene interacting with one atom is as derived in Cox et al.
[16] and is given by

E f (r) = η f 1πb

r

{
A

2

[
1

(r + b)4 − 1

(r−b)4

]

− B

5

[
1

(r + b)10 − 1

(r−b)10

]}

, (2)

where b is the radius for the fullerene and η f 1 is the mean atomic surface density of
the fullerene. The energy for the fullerene with an atom (Eq. 2) may be rewritten as
E = −Q6 + Q12 where

Qn(r1) = 2Cnη f 1πb

r1(2 − n)

{
1

(r1 + b)n−2 − 1

(r1 − b)n−2

}

, (3)

and the constants C6 and C12 are the Lennard–Jones constants A and B, respectively.
Figure 2 shows that the distance of any atom on the left fullerene from the centre

of the right fullerene is r2
1 = a2 + r2 − 2ar cos φ1, where a is the radius of the left

fullerene. For the second surface integral based on Eq. (3), the energy for two distinct
radii fullerenes becomes E f − f (r) = −G6(r) + G12(r) where Gn is given by

Gn(r) = η f 2

∫

S2

Qnd S2 = 2πη f 2

π∫

0

Qna2 sin φ1dφ1

= 4Cnπ2η f 1η f 2ab

r(n − 2)(n − 3)

[
1

(r + a + b)n−3 − 1

(r − a + b)n−3

− 1

(r + a − b)n−3 + 1

(r − a − b)n−3

]

, (4)

where C6 = A, C12 = B and η f 2 is the mean atomic surface density for the second
fullerene.

4 Nanoparticle with fullerene

Nano-systems may involve spherical nanoparticles and spherical fullerenes, and there-
fore the 6–12 Lennard–Jones potential for a nanoparticle with a fullerene is introduced
in this section. The potential energy of a nanoparticle with a fullerene is found from
the surface-volume integral which is used for a hollow molecule with a solid molecule,
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br1

r
φ1
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τ

Fig. 3 Geometry for two spheres

E = ηρ
∫

V

∫
S �(r)d SdV , where η denotes the mean atomic surface density of the

molecule, ρ denotes the average atomic volume density of the molecule and r denotes
the distance between two typical elements d S and dV .

The surface integral is the potential energy for a fullerene with an atom, Eq. (2). As
a result, the Lennard–Jones potential for a nanoparticle with a fullerene is the volume
integral obtained from Eq. (3).

Figure 3 shows that the distance of any atom on the left sphere with the centre of
the right sphere is r2

1 = τ 2 + r2 − 2τr cos φ1, where τ is the radius of any atom
on left sphere and the radius of the left sphere is a. For the volume integral, the
energy for the solid sphere and the hollow sphere with two distinct radii is found as
E f −p(r) = −H6(r) + H12(r) where Hn is given by

Hn = ρ

∫

V

QndV = 2πρ

a∫

0

π∫

0

Qnτ 2 sin φ1dφ1dτ

= 4Cnπ2ρηb

r(n − 2)(n − 3)

[

− 1

(n − 5)(r + a + b)n−5
+ r + b

(n − 4)(r + a + b)n−4

+ 1

(n − 5)(r − a + b)n−5
− r + b

(n − 4)(r − a + b)n−4

+ 1

(n − 5)(r + a − b)n−5
− r − b

(n − 4)(r + a − b)n−4

− 1

(n − 5)(r − a − b)n−5
+ r − b

(n − 4)(r − a − b)n−4

]

, (5)

where ρ is the mean atomic volume density and η is the mean atomic surface density.

5 Nanoparticle with nanoparticle

The Lennard–Jones potential for two distinct radii spherical nanoparticles will be pre-
sented in this section. The potential energy is found by a double volume integral,
E = ρ1ρ2

∫
V2

∫
V1

�(r)dV1dV2, where ρ1 and ρ2 denote the average atomic volume
densities of molecules, 1 and 2, respectively and r denotes the distance between two
typical volume elements dV1 and dV2.

Similarly, the first volume integral is the potential energy for a nanoparticle with
an atom therefore the equation for the first volume integral is found from Sect. 2,
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E p = −P6 + P12, where Pn is Eq. (1). For the second volume integral, the potential
energy equation is found as E p−p = −I6 + I12 where In is given by

In = ρ2

∫

2

PndV2 = 2πρ2

a∫

0

π∫

0

Pnτ 2 sin φ1dφ1dτ

= 4Cnπ2ρ1ρ2

(n − 2)(n − 3)(n − 4)

a∫

0

[
1

(n − 5)(r + τ + b)n−6

+ −r + (n − 6)b

(n − 5)(r + τ + b)n−5
− b(r + b)

(r + τ + b)n−4 + 1

(n − 5)(r + τ − b)n−6

− r + (n − 6)b

(n − 5)(r + τ − b)n−5
+ b(r − b)

(r + τ − b)n−4 − 2

(n − 5)(r + τ)n−6

+ 2r

(n − 5)(r + τ)n−5
+ 1

(n − 5)(r − τ + b)n−6 + −r + (n − 6)b

(n − 5)(r − τ + b)n−5

− b(r + b)

(r − τ + b)n−4 + 1

(n − 5)(r − τ − b)n−6 − r + (n − 6)b

(n − 5)(r − τ − b)n−5

+ b(r − b)

(r − τ − b)n−4 − 2

(n − 5)(r − τ)n−6 + 2r

(n − 5)(r − τ)n−5

]

dτ,

where ρ1 and ρ2 are the average atomic volume densities. However at the moment,
the value of n could be 6 and therefore some terms of the integral become

∫
1/xdx .

As a result, I6 becomes

I6 = Aπ2ρ1ρ2

6

[

r ln

(
(r − a)2 − b2

(r + a)2 − b2

)

+ 2r ln

(
r + a

r − a

)

+ b(r + b)

(r + a + b)

− b(r − b)

(r + a − b)
− b(r + b)

(r − a + b)
+ b(r − b)

(r − a − b)

]

,

and for n greater than 6, In is found to be

In = 4Cnπ2ρ1ρ2

(n − 2)(n − 3)(n − 4)(n − 5)

[

− r + (n − 6)a + (n − 6)2b

(n − 6)(n − 7)(r + a + b)n−6

+ b(r + b)

(r + a + b)n−5
− r + (n − 6)a − (n − 6)2b

(n − 6)(n − 7)(r + a − b)n−6 − b(r − b)

(r + a − b)n−5

+ 2(r + (n − 6)a)

(n − 6)(n − 7)(r + a)n−6 + r − (n − 6)a + (n − 6)2b

(n − 6)(n − 7)(r − a + b)n−6

− b(r + b)

(r − a + b)n−5
+ r − (n − 6)a − (n − 6)2b

(n − 6)(n − 7)(r − a − b)n−6 + b(r − b)

(r − a − b)n−5

− 2(r − (n − 6)a)

(n − 6)(n − 7)(r − a)n−6

]

.
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Table 1 Parameters of
fullerenes Cn [22] Fullerene Radius (Å) η (Å

−2
)

C60 3.55 0.37887

C82 4.15 0.37889

C240 7.06 0.38317

C540 10.53 0.38755

C960 14.02 0.38866

C1500 17.5225 0.38877

C2160 20.95 0.39163

C2940 23.8728 0.41052

C3840 27.95 0.39116

6 Summary and discussion

For each of the Lennard–Jones potential formulae derived here involving spheres
along with the Lennard–Jones atom–atom parameters, they also require two more
parameters for each formula which are the radius of the sphere and the mean atomic
surface density for a hollow sphere or the mean atomic volume density for a solid
sphere. Table 1 shows the parameter values for the radii and the mean atomic surface
densities for spherical fullerenes. For the nanoparticle parameters, the radius of the
carbon nanoparticle have a large range from 1.5 nm [23] to 30 nm [24]. The density
of the amorphous carbon nanoparticles is similar to the amorphous carbon density

2.2670 g cm−3 [23], therefore the mean atomic volume density is 0.11366 Å
−3

for the
carbon nanoparticles and used in Figs. 4a, c, 5b, d and 6.

Figure 4 shows the interaction energy for a carbon atom with (a) a carbon nano-
particle and (b) a carbon C60 fullerene for which both radii are 3.55 Å. The minimum
energy for a fullerene with an atom is deeper than that for a nanoparticle with one
atom. Similarly, the location of the minimum energy for the fullerene-atom is greater
than that for the nanoparticle-atom. This phenomena is a consequence of the total
number of atoms of the nanoparticle in question. The total number of atoms of the
nanoparticle and the fullerene are 21 and 60, respectively and therefore the attractive
energy for the nanoparticle-atom must be less than that for the fullerene-atom. The
distance of the minimum energy location for the fullerene-atom is greater than that for
the nanoparticle-atom, because the fullerene has more atoms on the spherical surface
and therefore gives the minimum energy location at a longer distance.

In order to save computational time, numerical simulations only count atomic inter-
actions inside a cut-off distance rc = 2.5σ , where σ is the van der Waals diameter. The
cut-off distance for the interaction of a solid or hollow sphere with an atom is found to
be rc = 2.5(σ + d), where d is either a or b as the radius of the nanoparticle or fuller-
ene, respectively. Figure 4 shows the interaction energy for (c) the nanoparticle-atom
and (d) the fullerene-atom at the cut-off distance for spheres of radius varying from
1 to 100 Å. The simulation ignores the interaction energy for any nanoparticle-atom
or any fullerene-atom at locations which exceed the cut-off distance, so that the sim-
ulation has a cumulation error from the ignored energy, and therefore the maximum
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Fig. 4 Interaction energy for a carbon nanoparticle with carbon atom (a = 3.55 Å, ρ = 0.11366, r =
5.9 to 16 Å) b carbon fullerene with carbon atom (b = 3.55 Å, η = 0.37887, r = 6.4 to 16 Å); Interac-
tion energy at cut-off distance for c carbon nanoparticle with carbon atom (a = 1 to 100 Å, ρ = 0.11366)

d carbon fullerene with carbon atom (b = 1 to 100 Å, η = 0.37887)

ignored energy is as small as possible. The ignored energy for the nanoparticle-atom
is less than −0.000031 eV and for the fullerene-atom is less than −0.00006 eV which
are the maximum ignored energies arising for sphere radii varying from 2 to 3Å, and
it tends to zero for increasing sphere radius.

Adisa et al. [19] have compared the interaction energies of methane molecules
in carbon nanotubes, modelling the CH4 molecule as a spherical surface of a certain
radius, with four smeared hydrogen atoms and with a carbon atom situated at the centre.
The numerical results show that the average interaction for 100 different orientations
of the methane molecule inside a carbon nanotube agree well with the modelling
results. Such a modelling approach is an important idealization which might dramati-
cally improve computational time. Some molecular dynamics simulations for methane
storage [25–28] consider many methane molecules and metallofullerenes interacting
with carbon nanotubes and these interactions have been successfully modelled by the
present authors [29] using the aproach adopted in Ref. [19].

Figure 5 shows the interaction energy for (a) C60 and C240 fullerenes and (b) a 4 Å
radius carbon nanoparticle with a C60 fullerene. Figure 5c and d shows the interaction
energy at the cut-off distance for the radii a and b varying from 1 to 100Å. The cut-off
distance for two distinct radii fullerenes and for two distinct radii fullerene and nano-
particle are rc = 2.5(σ + a + b) which includes both radii a and b. The maximum
ignored energy for two distinct radii fullerenes is −0.00023 eV occurring at the radii
a = b = 3.8 Å, and for two distinct radii fullerene and nanoparticle is −0.0001363 eV
occurring at the radii a = 11.25 Å and b = 7.6 Å, and both ignored energies tend to
zero for increasing sphere radii.
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Fig. 5 Interaction energy for a carbon fullerene with carbon fullerene (a = 7.06 Å, b = 3.55 Å, η1 =
0.37887, η2 = 0.38317, r = 13 to 20 Å) b carbon nanoparticle with carbon fullerene (a = 4 Å, b =
3.55 Å, ρ = 0.11366, η = 0.37887, r = 9.5 to 20 Å); Interaction energy at cut-off distance for c carbon
fullerene with carbon fullerene (a = 1 to 100 Å), b = 1 to 100 Å, η1 = 0.37887, η2 = 0.38317) d
carbon nanoparticle with carbon fullerene (a = 1 to 100 Å, b = 1 to 100 Å, ρ = 0.11366, η = 0.37887)

Figure 6a shows the interaction energy for two distinct radii nanoparticles and
Fig. 6b, c show the interaction energy at the cut-off distance for radii a and b varying
from 1 to 100 Å. For two distinct radii nanoparticles, the cut-off distance may have
two values, one coincides with the above mentioned cut-off distance, namely rc1 =
2.5(σ + a + b) and the other cut-off distance is rc2 = 2.5σ + a2/σ + b2/σ . Although
the interaction energy at the rc1 = 2.5(σ + a + b) cut-off distance does not tend to
zero for increasing sphere radii, the ignored energy is around −0.3 eV for radii a and b
equal to 100 Å, which is only 0.02% of the minimum energy. However, the first cut-off
distance has a shorter interaction range and therefore has the advantage of reducing
the computational time. For the second cut-off distance rc2 = 2.5σ + a2/σ + b2/σ ,
the maximum ignored energy is −0.23 eV occurring at radii a and b approximately
equal to 5 Å and the ignored energy tends to zero for increasing sphere radii. The
second cut-off distance has a longer interaction range due to a2/σ and b2/σ , and
requires additional computational time. However, the second cut-off distance gives
more accurate results for the energy.

7 Application

Endohedral fullerenes comprise atoms inside fullerenes, such as F−, Ne, Na+, Mg2+
or Al3+ [30]. Banhart and Ajayan [31] have reported diamond particles inside carbon
onions, which comprise multi-walled nested fullerenes. If the additional atom is a
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Fig. 6 a Interaction energy for carbon nanoparticle with carbon nanoparticle (a = 4 Å, b = 3.55 Å, ρ1 =
ρ2 = 0.11366, r = 9.1 to 20 Å); b Interaction energy at cut-off distance rc1 = 2.5(σ + a + b) for carbon
nanoparticle with carbon nanoparticle (a = 1 to 100 Å, b = 1 to 100 Å, ρ1 = ρ2 = 0.11366); c Interac-
tion energy at cut-off distance rc2 = 2.5σ +a2/σ +b2/σ for carbon nanoparticle with carbon nanoparticle
(a = 1 to 100 Å, b = 1 to 100 Å, ρ1 = ρ2 = 0.11366)

metal, then it is called an endohedral metallofullerene or simply a metallofullerene
[32,33], and represented by the notation M@Cn where the symbol M is used to denote
the additional atom inside the fullerene, and n indicates the total number of carbon
atoms in the cage. The size of the endohedral fullerene is based on the number of car-
bon atoms n which ranges from 60 to 100 with the most stable abundant types being
the M@C80 and M@C100 endohedral fullerenes [18]. M@C60 such as La@C60 and
Ca@C60 metallofullerenes are unstable in air [18]. However, the most abundant neu-
tral stable metallofullerenes are the M@Cn class (n = 80, 82, 84), such as Ca@C82,
Sc3 N@C80, Tb@C82, Dy@C82, La@C82, Sc2 @C84 [18].

We might utilise the interaction of a nanoparticle with a fullerene to determine the
maximum possible size of a nanoparticle inside certain fullerenes. The interaction for
the nanoparticle with the fullerene is found from E f −p(r) = −H6(r)+ H12(r) where
Hn is defined by Eq. (5). We assume that the nanoparticle is located at the centre of
the fullerene, so that the distance r is zero and the energy E f −p(0) is found from the
limit r → 0 using L’Hôpital’s rule and is given by

E f −p(0) = −2Aπ2ρηb

3

[
3

2(a + b)2 − b

(a + b)3 − 3

2(a − b)2 − b

(a − b)3

]

+4Bπ2ρηb

45

[
9

8(a + b)8 − b

(a + b)9 − 9

8(a − b)8 − b

(a − b)9

]

, (6)
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Fig. 7 a Energy E f −p(0)/(ρη) for potassium nanoparticle at centre of C60, C82, C240 and C540 fuller-
enes and b Energy E f −p(r)/(ρη) for potassium nanoparticle inside C540 fullerene with radius for 6.7,

7.511 and 8 Å

where A and B are the attractive and repulsive constants for a nanoparticle atom with
a carbon atom.

The maximum permissible radius of a nanoparticle inside a fullerene is determined
from the condition E f −p(0)/(ρη) < 0, where ρ and η are coefficients occurring in
the energy. Figure 7a shows the energy E f −p(0)/(ρη) for a potassium nanoparticle
inside C60, C82, C240 and C540 fullerenes and shows the energy decreasing as the
radius of the nanoparticle increases. However, the energy increases rapidly as the
nanoparticle radius becomes close to the surface of the fullerene, since the distance
between the two surfaces becomes small, and there is a greater repulsive contribution
to the energy. When the energy E f −p(0)/(ρη) > 0, the additional atom cannot exist
inside the fullerene since it would have a positive energy and therefore escape from
the fullerene. As a result, the radius occurring at the minimum energy gives the radius
of the most stable nanoparticle. If the radius of the nanoparticle is smaller than this
radius, it will not locate at the centre of the fullerene because the minimum energy
position will be offset from the centre of the fullerene. Figure 7b shows the energy
E f −p(r)/(ρη) for a potassium nanoparticle inside C540 with radii 6.7, 7.511 and
8 Å. For those nanoparticle radii between the most stable radius and the maximum
radius, the endohedral fullerene is still stable. When the radius of the nanoparticle is
greater than the maximum radius, the endohedral fullerene is not stable because the
nanoparticle experiences a large repulsive force from the fullerene.

Tables 2 and 3 show that the numerical values of the 6–12 Lennard–Jones constants
and the most stable and maximum radii for nanoparticles inside C60, C82, C240 and
C540 fullerenes. In Tables 2 and 3 the star * indicates those materials which have no
minimum energy while the hash # indicates that the energy E f −p(0)/(ρη) is always
greater than zero inside the C60 fullerene, and therefore these materials are unstable in
the C60 fullerene, such as platinum, chlorine and iodine. For the other given numerical
values of the Lennard–Jones constants for chlorine, the chlorine is predicted to be
stable in the C60 fullerene.

8 Conclusion

Many nanodevices involve spherical nanoparticles or fullerenes as components, and
they are usually investigated using a computational approach such as molecular
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Table 2 6–12 Lennard–Jones constants and most stable radius of nanoparticle inside fullerene

σ (Å) |ε| (meV) @C60 (Å) @C82 (Å) @C240 (Å) @C540 (Å)

C60–C60 [21] 3.47 2.86 * * * *

K+–K+ [34] 3.564 3.0352 0.205 1.068 4.038 7.511

F−–F− [35] 2.224 0.403 1.072 1.693 4.615 8.086

Pt–Pt [36] 3.92 19.833 * 0.880 3.885 7.358

Zn–Zn [37] 2.462 5.372 0.956 1.587 4.513 7.984

Au–Au [38] 2.934 1.691 0.706 1.371 4.310 7.781

Mg2+–Mg2+ [39] 0.7062 38.798 1.754 2.356 5.267 8.738

Mg2+–Mg2+ [39] 0.8846 37.944 1.676 2.279 5.191 8.661

Mg2+–Mg2+ [39] 0.9445 37.944 1.650 2.253 5.165 8.635

Cl−–Cl− [39] 2.156 4.336 1.104 1.724 4.645 8.115

Cl−–Cl− [40] 4.40 4.332 * 0.582 3.677 7.152

Cl−–Cl− [40] 4.05 6.509 * 0.806 3.828 7.302

Cl−–Cl− [40] 4.45 4.622 * 0.545 3.655 7.130

Na+–Na+ [40] 3.33 0.124 0.446 1.184 4.139 7.611

Na+–Na+ [40] 2.43 2.031 0.972 1.601 4.527 7.998

Na+–Na+ [40] 2.58 0.643 0.897 1.534 4.462 7.933

Li+–Li+ [41] 1.982 13.429 1.185 1.800 4.719 8.190

I−–I− [41] 3.819 10.149 * 0.935 3.928 7.401

* Indicates no most stable radius

dynamics simulation. This gives a numerical value for the potential energy as calcu-
lated from every atom–atom interaction, and due to the large number of atomic pairs
in the system, the simulation may require considerable computational time. Many of
these computational studies use the Lennard–Jones potential for the simulation of two
non-bonded molecular structures. In this paper, we determine analytical formulae for
the Lennard–Jones potential for the four interactions: (i) a solid spherical nanoparticle
with an atom, (ii) a hollow spherical fullerene with another hollow spherical fullerene,
(iii) a solid spherical nanoparticle with a hollow spherical fullerene and (iv) a solid
spherical nanoparticle with another solid spherical nanoparticle. These formulae are
based on the continuum approximation, which assumes that a discrete atomic structure
can be replaced by an average atomic surface density or an average atomic volume
density. The formulae presented here could be used to reduce the computational time in
the determination of Lennard–Jones interactions for those systems involving spherical
nanoparticles or spherical fullerenes.

Computational time is usually reduced by only considering short range atom–atom
interactions, and ignoring those atomic interactions taking place over longer distances.
Generally, the cut-off distance for atom–atom interactions is taken to be rc = 2.5σ

where σ is the van der Waals diameter. However, the formulae presented here indi-
cate that this is not suitable for those interactions involving spherical nanoparticles
and fullerenes, and here the cut-off distance is found empirically from the derived
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Table 3 Maximum radius of nanoparticle inside fullerene

@C60 (Å) @C82 (Å) @C240 (Å) @C540 (Å)

K+–K+ [34] 0.263 1.305 4.446 7.962

F−–F− [35] 1.290 1.964 4.967 8.462

Pt–Pt [36] # 1.092 4.304 7.828

Zn–Zn [37] 1.164 1.857 4.876 8.374

Au–Au [38] 0.880 1.634 4.693 8.198

Mg2+–Mg2+ [39] 1.977 2.597 5.540 9.021

Mg2+–Mg2+ [39] 1.903 2.526 5.474 8.956

Mg2+–Mg2+ [39] 1.878 2.502 5.451 8.934

Cl−–Cl− [39] 1.324 1.994 4.993 8.487

Cl−–Cl− [40] # 0.737 4.111 7.646

Cl−–Cl− [40] # 1.006 4.252 7.779

Cl−–Cl− [40] # 0.691 4.090 7.627

Na+–Na+ [40] 0.567 1.433 4.538 8.050

Na+–Na+ [40] 1.181 1.872 4.888 8.386

Na+–Na+ [40] 1.098 1.803 4.831 8.330

Li+–Li+ [41] 1.411 2.070 5.060 8.552

I−–I− [41] # 1.155 4.345 7.866

# Indicates no maximum radius

formulae to be rc = 2.5(σ + d) for the interaction of an atom with a solid or hollow
sphere, where d is either a or b being the radius of the nanoparticle or the fullerene,
respectively. For the interaction of a hollow or solid sphere with either a hollow or
solid sphere, a reasanable cut-off distance is found to be rc = 2.5(σ + a + b), where
a and b are two radii. For the interaction between two distinct radii solid spheres, the
cut-off distance could be either rc1 = 2.5(σ + a + b) or rc2 = 2.5σ + a2/σ + b2/σ .
The former significantly reduces the computational time, while the latter provides a
more accurate result for the energy.

As an illustration of the formulae presented here we determine both the most stable
and the maximum radii of a solid spherical nanoparticle inside a fullerene, modelling
the centre of a carbon onion or metallofullerenes. If the nanoparticle radius is less than
the most stable value, then a stable equilibrium exists which may be offset from the
centre of the fullerene. If the nanoparticle radius exceeds the maximum value, then the
minimum energy location is unstable. For those nanoparticle radii between the most
stable radius and the maximum radius, the nanoparticle is still stable. We determine
these radii for certain materials such as K+, F−, Zn, Au, Mg2+, Cl−, Na+ and Li+
which are stable in a C60 fullerene.
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